IN THE MONROE CIRCUIT COURT STATE OF INDIANA

Mark White, MD

Plaintiff,

٧.

Indiana University and **Monroe County Community School Corporation**, Defendants.

Case No. 53C06-2508-CT-002221

PLAINTIFF'S NOTICE OF CORE ISSUE AND DEMONSTRATIVE TEST

Comes now the Plaintiff, Mark White, MD, appearing pro se, and respectfully submits this Notice to clarify the singular factual issue in dispute and to provide the Court with the demonstrative test by which that issue can be resolved.

1. Core Issue

This case turns entirely on a single factual determination: whether the "flat codon table" accurately represents the codon—amino acid relationships in nature, or whether the spherical "G-Ball" representation is the scientifically and mathematically correct depiction. The flat representation is false, leading to nothing but false statements and a very poor description of the genetic code. The spherical representation is true, leading to all true statements and a vastly superior description of the genetic code.

2. Demonstrative Test

To resolve this issue clearly, efficiently, and without unnecessary expert testimony, Plaintiff has prepared a simple three-question binary-choice test, called the flashlight test.

- Each question presents two visual options.
- Each question requires a binary (true/false or correct/incorrect) selection.
- No question contains a "trick" element.
- The test is designed to be answered in three seconds per question.
- All props will be produced in court.

3. Questions

- \circ Question 1: Arithmetic truth (e.g., 2 + 2 = 3 vs. 2 + 2 = 4)
- Question 2: Shape of the Earth (Globe vs. Flat Map)
- Question 3: Representation of the genetic code (Flat Codon Table vs. G-Ball)

4. Purpose

The test is designed to establish, in the simplest and most public manner possible, whether a test-taker can distinguish between a false representation and a correct one. The third question is the only one directly relevant to the legal and scientific dispute in this case; the first two questions establish the basic capacity and willingness of the respondent to make factual determinations. They also provide valid scientific comparisons for further debate.

5. Administration

Plaintiff will bring the physical props to court and can administer the test in under ten seconds to any witness, party, or expert, in the presence of the Court and jury.

6. Relief Requested

Plaintiff respectfully requests that the Court:

- a. Accept the attached PDF ("Flashlight Test") as a demonstrative exhibit for purposes of pre-trial and trial proceedings; and
- b. Permit Plaintiff to administer this test during any hearing, deposition, or trial session where the core factual dispute is addressed.

Respectfully submitted,

/s/ Mark White, MD
Plaintiff, Pro Se
3309 E Mulberry Ct
Bloomington, IN 47401
mark@codefun.com
812-272-3189

FLASHLIGHT TEST

Case No. 53C06-2508-CT-002221

Plaintiff: Mark White, MD

Purpose:

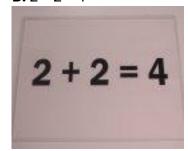
This test is designed to measure the ability to recognize obvious, verifiable truths in visual and mathematical form.

The court case at issue involves the third and final question. The first two questions establish the baseline for recognizing objective truth, and a simple method for discussing them.

This trial revolves around one simple matter of truth.

Instructions to Participant

- 1. You will be presented with three questions.
- 2. There are no "trick" questions.
- 3. Each question consists of **two possible answers** presented in an unspoken sideby-side visual display.
- 4. Each question represents a single binary choice (true vs. false).
- 5. You will have **three seconds per question** to point to your answer.
- 6. You must answer all three questions correctly to pass.
- 7. Failure to answer or hesitation beyond the time limit counts as incorrect.
- 8. This test is graded in binary pass-fail fashion.


Question 1 – Arithmetic Truth

Which statement is correct?

A:
$$2 + 2 = 3$$

B:
$$2 + 2 = 4$$

Question 2 – Shape of the Earth

Which model accurately represents the shape of the Earth?

A: Flat map of the Earth (rectangular projection)

B: Globe of the Earth

Question 3 - Map of the Genetic Code

Which model accurately represents the codon table in its true mathematical and scientific form?

A: Flat codon table

B: G-Ball (spherical codon table)

Extra Credit (Optional):

Please explain your reasoning for each answer, or make any comments you like. You may now ask questions. You are now free to change your answers if you feel that you were misled, or did not fully understand the question:

Passing Criteria:

Correct answers: B, B, B

Correct Answers and Explanations

Q1: 2 + 2 = 4

Why: This is a basic arithmetic fact, universally accepted and provable.

Q2: Globe of the Earth

• Why: The Earth is an oblate spheroid; a flat projection distorts distances and shapes.

Q3: G-Ball

 Why: The genetic code is inherently symmetrical and optimally represented on a sphere.

• The flat codon table distorts and misrepresents these relationships. It fails to establish codon locations. It fails to adequately compress the data. It leads to demonstrably false statements about the genetic code.

 The G-Ball preserves these relationships in their correct spatial form. It reveals the structure of perfect symmetry of data within the table. It accurately locates codons within the table. It performs an optimized compression of the data. It leads to true statements about the genetic code.

Logical Conclusion of Fact: The G-Ball is a scientifically, mathematically, logically better basis for describing of the genetic code. This fact is immediately obvious, easily demonstrated, and does not need an "expert" explanation to be understood.

This is the simplest method for clearly establishing fact in this matter.

Participant Information:					
Name:					
Date:					
Email (optional – see privacy policy):					
Allow contact: Yes No					
Signature:					
Certification:					
I certify that I administered this test according to the instructions above, with a three-second limit per question.					
Administered by:					
Date:					
Comments:					

Privacy Policy

We collect your name and date solely to record your participation in the Flashlight Test. Providing your email address is optional and will be used only if you select "Allow contact: Yes" to receive:

- Updates on the case in which this test is used;
- Information about related public discussions or opportunities to participate;
- Your own results and any relevant explanatory material.

We will not sell or share your personal information with third parties for marketing purposes. Your individual responses may be used in court or published in aggregate form to illustrate test results, but your name and contact information will not be publicly disclosed without your consent.

You may request deletion of your information at any time by contacting:

mark plus the at sign plus white plus a dot plus golf

Data will be stored securely and deleted within 30 days of such a request.

Participation is voluntary. You may refuse to answer any question or provide any contact information.

Preface: How I Knew in an Instant — and Why Others Don't

What you are about to read is the formal explanation of something I recognized in a split second. Literally.

The moment I saw the codon system in its true form, I knew exactly what I had found and what it meant. The recognition was immediate — as obvious as realizing that 2 + 2 = 4, or that the Earth is round the first time you see a globe. It was not the product of years of guessing; it was a single moment of clarity.

I have spent the better part of three decades trying to get a single scientist to admit that he can see it too. This is more about scientist's ability to see, than truth and its current role in science.

And here's the thing: anyone else can see it and understand it just as quickly. It's not hard. There is nothing "tricky" about it. The relationships are right there. What's hard is allowing yourself the permission to believe it is true — to believe that something this simple, this important, and this obviously correct could ever have been gotten wrong in the first place. Why would anyone ever need permission to believe this?

Science got it wrong. Science is unable to admit the mistake. Science, for most people, is the authority that grants permission to believe truths in nature. And right now, science is withholding that permission. It is actively preventing the world from knowing the difference between true and false in this case. Science is utterly terrified of this mistake.

That's why this proof matters. It isn't just about a different way to draw a table — it's about restoring the public's right to see, understand, and believe what is plainly true in nature.

This document — Exhibit A — is the formal, mathematical statement of that truth: the flat codon table is mathematically false, and the G-Ball is mathematically true.

Once you see it, you will know it. The only question is whether you will allow yourself to believe it.

Science is betting that you cannot.

I am betting that you can.

Exhibit A

Self-Evident Truth of Mathematics — The Flat Table is False, the Spherical Table is True

This conclusion is self-evident because it follows directly from symmetry. The codon dataset exhibits icosahedral symmetry. A flat table in the plane cannot support that symmetry, while the sphere can. Therefore, any faithful mapping must be spherical, not planar. The G-Ball is the construction that realizes this symmetry. Once the construction is seen, the truth is unavoidable: the flat table is false, the spherical table is true.

This is the entire case.

For those who require a more scientific demonstration, the following sections provide detail — but the truth can already be seen directly, like the flashlight test.

1. Framing the Claim

This case is about truth in the mathematical sense. In logic, something is either true or false for a given definition of "truth." For a codon table, truth is not a matter of opinion or convenience — it is a mathematical property. A codon table is a mathematical graph: it has a set of points (codons), a set of relations (how codons connect by wobble, degeneracy, and other constraints), and a geometry in which these relations are embedded. If the geometry preserves the real relationships in the data, the graph is true. If it distorts them, the graph is false.

Most people recognize a simple truth like 2 + 2 = 4 without being professional mathematicians. The codon table, when understood as a graph, is that kind of truth: its correctness can be made obvious without requiring advanced mathematics. In other words, you don't need a weatherman to know which way the wind blows.

2. Plain-English Background

A mathematical graph is a set of vertices, edges, and (optionally) faces. The vertices are labeled points; edges connect them; the whole set is embedded on some surface. Coordinates or positions on that surface give the points their names, and the geometry of the surface defines how distances and adjacencies are measured.

Examples:

- A map of the Earth is a graph whose vertices are locations and whose surface is a sphere.
- You can draw that map on paper, but any flat projection distorts distances, directions, or areas the symmetry of the Earth's surface cannot be preserved on a plane. Only a spherical representation is geometrically true.
- The same logic applies to any dataset with inherent geometry: change the surface and you can make the map true or false.
- For example, the vertices of a cube can be mapped truthfully to a sphere but not to a plane if you want to preserve their true symmetrical relationships.

A data table (or spreadsheet) is also a graph: the data points are vertices, and a set of rules determines where they go and how they relate. If the embedding distorts key relationships — symmetry, adjacency, or metric distances — the map is false.

3. Puzzle Analogy

A puzzle is a set of pieces that must be put together in the correct way. There is only one correct way to solve the puzzle.

A codon data table is a puzzle of known pieces. There is only one known correct way to solve the puzzle. When there is only one way to do something, you must do it that way; otherwise, the solution is wrong. Every description based on that incorrect solution must also be wrong.

A puzzle must first be solved in a true way before properties of the solution can be described in a true way.

4. The Codon System as a Graph — Proof by Construction

The codon table is a map between two molecular sets: nucleic acids (triplets of bases) and amino acids. This mapping is not random — it has perfect internal symmetry in how codons group, how degeneracies occur, and how wobble constraints connect them.

When this relational structure is graphed, something remarkable happens:

The 64 codons, grouped by amino-acid assignment and wobble/degeneracy relationships, can be placed without distortion on the vertices/faces of a perfect dodecahedron (or its dual icosahedron) inscribed on a sphere. In this arrangement:

- All adjacency rules are preserved.
- All degeneracy patterns are preserved.
- The arrangement admits the full icosahedral symmetry group (Ih) as isometries of the sphere.

This is only possible if the codon relation structure actually possesses icosahedral symmetry. The mapping itself is the constructive proof of that fact. The false graph can only do one thing. The true graph can also do this one thing equally well. The true graph can do a large number of true things that the false graph must do in a false way. Therefore, the true graph is a mathematically superior description of the graph.

5. Why the Flat Table is False

The symmetry group Ih cannot be realized by any symmetry of the Euclidean plane (E²). No wallpaper group contains Ih.

Therefore, no planar embedding of the codon relation can preserve all of its true symmetries and adjacencies.

A flat codon table can preserve the labels but must distort the structure — it is false for the biologically relevant geometry.

By contrast:

• The sphere (S²) does admit Ih as a symmetry group.

- A dodecahedral or icosahedral tiling is an isometric embedding on S².
- The G-Ball uses exactly this embedding, so it is symmetry-true and preserves all relationships.

6. Minimal Rigorous Proof

Definitions.

- Let DDD be the set of 20 amino-acid classes (equivalently, codon equivalence classes).
- Let R⊂D×DR\subset D\times DR⊂D×D be the adjacency relation induced by Exhibit
 A (the G-Ball construction) i.e., two classes are related iff their positions are
 adjacent in that construction.
- A map f:D→Mf: D\to Mf:D→M (into a surface MMM) is true if there exist actions
 σ:G→Aut(D,R)\sigma:G\to \mathrm{Aut}(D,R)σ:G→Aut(D,R) and ρ:G→Iso(M)\rho:G\to
 \mathrm{Iso}(M)ρ:G→Iso(M) such that fff is equivariant: f∘σ(g)=ρ(g)∘ff\circ
 \sigma(g)=\rho(g)\circ ff∘σ(g)=ρ(g)∘f for all g∈Gg\in Gg∈G. (Adjacency-preserving; no metric assumption needed.)

Symmetry fact.

By Exhibit A, Aut(D,R)\mathrm{Aut}(D,R)Aut(D,R) contains a subgroup $G\cong IhG\setminus G$ where the orientation-preserving part $I\cong A5I\setminus G$ (order 60) and $Ih\cong A5\times C2I_h\setminus G$ (order 420).

Background.

- A) The only finite subgroups of the planar isometry group E(2)E(2)E(2) are cyclic CnC_nCn and dihedral DnD_nDn; neither contains A5A_5A5. Hence no planar isometry group contains III or IhI_hIh.
- B) The sphere S2S^2S2 admits an isometric action of III (the rotational icosahedral group), extended by reflections to Ihl_hlh.
- C) A "flat codon table" is a mapping f:D \rightarrow E2f:D\to \mathbb{E}\^2f:D \rightarrow E2; the G-Ball is a mapping f:D \rightarrow S2f:D\to S^2f:D \rightarrow S2.

Theorem.

Given the symmetry fact and (A–B):

• Any f:D \rightarrow E2f:D\to \mathbb{E}^2f:D \rightarrow E2 cannot be IhI_hIh-equivariant \Rightarrow any flat codon table fails the truth criterion.

• There exists $f:D \rightarrow S2f:D \setminus S^2f:D \rightarrow S2$ that is IhI_hIh -equivariant (the G-Ball) \Rightarrow a spherical codon map satisfies the truth criterion.

Conclusion.

Under the minimal, symmetry-faithful definition of "true map," flat representations are impossible; a spherical representation exists. QED.

Note: This formalization was generated with the assistance of ChatGPT, an AI language model. Plaintiff accepts full responsibility for its content and any errors contained herein.

7. Quick Counters to Common Pushbacks

- "You can always draw it flat." You can draw the labels anywhere, but you can't preserve Ih symmetry in the plane. Labels aren't the structure. We are graphing structure, not labels.
- "Truth is about lookup convenience." If your only goal is lookup, any format works. But if your goal is to preserve and study the constraints that drive folding, degeneracy, and evolution, the geometry must be correct.
- "The sphere is also a projection." The G-Ball's geometry is not a projection it's an isometric embedding of the codon graph in the surface that matches its actual symmetry.

Conclusion

The G-Ball is not just a "different way" to draw the codon table — it is the only geometrically true way. The flat codon table is mathematically false for the real relational structure of the genetic code. The proof is constructive: the data itself fits perfectly — and only — into the geometry the G-Ball uses.

This is a self-evident truth of mathematics.

The flat table is false.

The spherical table is true.

IN THE MONROE CIRCUIT COURT

MONROE COUNTY, STATE OF INDIANA

MARK WHITE, MD

Plaintiff,

٧.

MONROE COUNTY COMMUNITY SCHOOL CORPORATION (MCCSC)

and

INDIANA UNIVERSITY

Defendants.

Case No. 53C06-2508-CT-002221

PLAINTIFF'S EXHIBIT B

Proof by Contradiction: Gamow's Codon Table and the Necessity of the G-Ball

1. Background.

In 1954, physicist George Gamow proposed the first codon table as a predictive model of genetic coding. Gamow drew twenty separate triangles on a flat sheet of paper, asserting two exclusivity rules:

- (a) each triangle contained one and only one amino acid, and
- (b) each amino acid appeared in exactly one triangle.

This generated **40 distinct predictions** (20 triangles × 20 amino acids).

2. Empirical Results.

Subsequent empirical discoveries of codon assignments showed that:

- Amino acids appear in multiple triangles, not just one; and
- Triangles contain multiple amino acids, not just one.

Gamow's predictions therefore failed in all 40 out of 40 cases.

3. Logical Consequence.

The probability of such complete failure by random chance is effectively zero. A 0-for-40 result is not ordinary error—it is systematic contradiction. This proves that Gamow's **underlying assumption** was flawed, not the data.

Gamow's critical mistake: he treated the triangles as **flat, disconnected units**, rather than assembling them into their natural whole—a sphere. By assuming linearity and flatness, he destroyed the code's true spatial constraints.

4. Correction and Proof.

When the twenty triangles are properly assembled into a sphere (the **G-Ball**), and the exclusivity assumption is dropped, the contradictions vanish. The spherical model accommodates codon degeneracy, preserves adjacency relationships, and matches empirical codon assignments without exception.

Thus:

- **Mathematically**: Gamow's flat-exclusive model collapses by contradiction; only the spherical model remains valid.
- Scientifically: The G-Ball uniquely fits all known codon data.
- **Logically**: A total systematic failure (0/40) isolates the false assumption and dictates its remedy.

5. Conclusion.

The only correction required is to recognize Gamow's error and complete his geometry. Once corrected, the spherical codon map (the G-Ball) emerges as the uniquely valid representation of the genetic code.

This constitutes proof that the continued use of the flat codon table in science education is not only scientifically invalid, but demonstrably false.

Respectfully submitted,

/s/ Mark White, MD Mark White, MD Plaintiff, Pro Se

IN THE MONROE CIRCUIT COURT

MONROE COUNTY, STATE OF INDIANA

MARK WHITE, MD

Plaintiff,

٧.

MONROE COUNTY COMMUNITY SCHOOL CORPORATION (MCCSC)

and

INDIANA UNIVERSITY

Defendants.

Case No. 53C06-2508-CT-002221

PLAINTIFF'S MOTION FOR SUMMARY JUDGMENT

Plaintiff, Mark White, MD, respectfully moves this Court for summary judgment in his favor pursuant to Indiana Trial Rule 56, and in support thereof states as follows:

I. INTRODUCTION

This case turns on a single issue: whether public institutions may present a scientifically disputed model as unquestioned fact while refusing to allow evidence or debate.

The answer is no. Teachers and institutions are not arbiters of scientific fact. Their duty is to present evidence, permit debate, and allow students to seek truth. Defendants have failed that duty by continuing to teach the "flat codon table" as final truth while refusing to defend it with evidence or permit discussion.

This is not science. It is misrepresentation. And it has caused harm to the Plaintiff and confusion to the public.

There is no genuine issue of material fact. The Court can and should enter judgment now, declaring the duty of institutions to present evidence honestly and allow debate.

II. PROOFS OF TRUTH

Exhibit A — Proof by Construction

The G-Ball, a physical model, demonstrates that alternative scientific evidence exists. This is not speculation but construction.

Exhibit B — Proof by Math, Science, and Logic

Gamow's 1954 codon table predicted 40 exclusive codon–amino acid assignments. All 40 failed, proving a systematic error in the assumption of flatness. This shows that competing evidence exists, demanding open debate.

Exhibit C — Proof by Common Sense

Teaching the flat codon table as unquestioned truth is the equivalent of teaching a flat Earth. Common sense compels debate when evidence exists to the contrary.

Exhibit D — Proof by Judgment

The final proof belongs to this Court. Just as Solomon resolved disputes with wisdom, this Court can resolve the matter of process: teachers may not suppress evidence, institutions may not bar debate, and the public may not be misled under the name of science.

III. LEGAL STANDARD

Summary judgment is proper when there is no genuine issue of material fact and the moving party is entitled to judgment as a matter of law. **Ind. Trial Rule 56(C).**

Here, the only question is whether evidence exists that requires scientific debate. Plaintiff has demonstrated that it does. Defendants have provided none in rebuttal. There is therefore no factual dispute.

The law requires institutions that advertise "science" and "evidence-based teaching" to present evidence honestly and allow reasonable debate. By refusing to do so, Defendants commit misrepresentation.

This case does not require the Court to solve scientific or mathematical problems. It requires only recognition that Plaintiff has presented evidence, and that Defendants have failed to provide any evidence in rebuttal. The issue is therefore procedural, not technical: whether institutions may suppress debate by refusing to defend the evidence they teach as fact.

IV. BURDEN OF THIS CASE

Plaintiff has carried this burden for decades, doing the hard work of building the model, testing it, and now bringing it before this Court. Plaintiff has also taken on the lawyer's work of presenting the matter in the simplest possible form, so that the Court may resolve it without unnecessary complication.

The burden is no longer Plaintiff's to carry. It belongs to Defendants, who for twenty-five years have refused to do the work of responding with evidence. Their refusal is what has made this case necessary, and what risks wasting judicial resources.

If Defendants wish to contest this truth, then let them finally do the work they have avoided. Plaintiff has carried the burden long enough.

V. AVOIDING A CIRCUS

Defendants may prefer to turn this case into a spectacle, reminiscent of the Scopes Monkey Trial. Plaintiff does not.

Plaintiff's goal is efficiency, clarity, and fairness. The truth of this case is simple and does not require drama or theatrics. If Defendants insist on a trial, Plaintiff will of course be prepared, and will request a jury of his peers. Plaintiff accepts that judgment and will live with the consequences.

The Court can prevent that outcome. By recognizing that Plaintiff has provided evidence while Defendants have provided none, the Court can resolve this case now, cleanly and justly, without allowing it to become the kind of public circus that benefits no one.

VI. RELIEF REQUESTED

For the reasons set forth above, Plaintiff respectfully prays that this Court grant the following relief:

- Declare that teachers and institutions are not arbiters of scientific fact, but are obligated to present evidence honestly and allow reasonable debate;
- 2. Declare that evidence exists which demonstrates the need for scientific debate concerning the representation of the genetic code;
- 3. Enter summary judgment for Plaintiff on all counts;

- 4. Grant the declaratory and injunctive relief requested in the Complaint, limited to ensuring that evidence is presented honestly and debate is permitted; and
- 5. Provide such further relief as the Court deems just and proper.

Respectfully submitted,

/s/ Mark White, MD Mark White, MD Plaintiff, Pro Se

IN THE MONROE CIRCUIT COURT

MONROE COUNTY, STATE OF INDIANA

MARK WHITE, MD

Plaintiff,

٧.

MONROE COUNTY COMMUNITY SCHOOL CORPORATION (MCCSC)

and

INDIANA UNIVERSITY

Defendants.

Case No. 53C06-2508-CT-002221

ORDER GRANTING PLAINTIFF'S MOTION FOR SUMMARY JUDGMENT

The Court, having considered Plaintiff's Motion for Summary Judgment, the supporting exhibits, and the record in this case, now finds that there is no genuine issue of material fact and that Plaintiff is entitled to judgment as a matter of law.

It is therefore ORDERED, ADJUDGED, AND DECREED that:

- 1. Teachers and institutions are not arbiters of scientific fact, but are obligated to present evidence honestly and allow reasonable debate;
- 2. Evidence exists which demonstrates the need for scientific debate concerning the representation of the genetic code;
- 3. Summary judgment is entered in favor of Plaintiff on all counts;
- 4. The declaratory and injunctive relief requested in the Complaint is GRANTED, limited to ensuring that evidence is presented honestly and debate is permitted; and
- 5. The Clerk is directed to enter this judgment upon the docket.

For clarity, the Court does not adjudicate the substance of scientific claims, but only recognizes that Plaintiff has presented evidence, that Defendants have offered none in rebuttal, and that institutions have a duty to allow reasonable debate when evidence is presented.

SO ORDERED this day of	, 2025.		
Judge, Monroe Circuit Court			

Prepared by:

/s/ Mark White, MD Plaintiff, Pro Se